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Practical Optimization Steps

Start with those that require no code modification
– Compiler switches
– Virtual-node vs. co-processor mode
– Using optimized libraries (DGEMM, MASSV, etc.)
– Parallel opts

• MPI_EAGER_LIMIT
• Explicit mapping
• Etc.

Use directives within code
– Alignment assertions
– Aliasing assertions
– Loop unrolling suggestions
– Vectorization suggestions
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Practical Optimization Steps

Hierarchy of direct code modifications 
– Appropriate if performance bottlenecks are highly concentrated
– Rearranging memory

• Cache reuse
• Contiguous pairs of doubles allow for quad-word loads

– Use double-hummer intrinsics 
• Register/instruction schedule still done by compiler

– Hand-Coding assembler 
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BG/L Compute Chip

Source: IBM
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PPC440 Characteristics

32-bit architecture at 700 MHz

Single integer unit

Single load/store unit

Special double floating-point unit (double hummer)

Floating-point pipeline: 5 cycles

Floating-point load-to-use latency: 4 cycles
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Double FPU

Double FPU has 32 primary floating-point registers, 
32 secondary floating-point registers, and supports:
– Standard PowerPC instructions, which execute on fpu0 

(lfd, fadd, fmadd, fadds, fdiv, …), and
– SIMD instructions for 64-bit floating-point numbers 

(lfpdx, fpadd, fpmadd, fpre, …)
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Compute Chip Characteristics

L1 Data cache 
– 32 KB total size, 32-Byte line size, 64-way associative, 

round-robin replacement

L2 Data cache 
– Prefetch buffer, holds 16 128-byte lines

L3 Data cache 
– 4 MB, ~35 cycles latency, on-chip

Memory
– 512 MB DDR at 350 MHz, ~85 cycles latency
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Peak Flop/s

700 Hz * 2 flops/cycle * 2 fpus =
– 2.8 GFlop/s theoretical peak per processor

Assumes quite a few things
– All FMAs
– Perfect use of double hummer (more soon)
– Significant cache reuse (e.g., not streaming)
– Not load bound
– Can fill 5-stage pipeline
– Etc.

Caution: %-peak is only meaningful in comparison to something.
– 10% may be good, 1% may be good, 50% may be bad…
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Memory Bandwidth

L1-cache: can complete 1 quadword load per clock cycle: 
16B*700/s = 11.2GB/s

Out of L1-cache: depends on complex three-level memory hierarchy 
Theoretical max = 3.7GB/s
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IBM XL Compiler Optimizations

General optimization levels
– Default optimization = none (very slow)
– -O: good place to start, use with -qmaxmem=64000
– -O2: same as -O
– -O3 -qstrict: can try more aggressive optimization but must strictly 

obey program semantics
– -O3: aggressive, allows re-association, will replace division by 

multiplication with the inverse
– -qhot: turns on high-order transformation module will add vector 

routines, unless -qhot=novector
– -qreport: vectorization/optimization report on loops
– -qipa: inter-procedure analysis; may cause very slow compilation
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IBM XL Compiler Optimizations (cont.)

Architecture flags
– -qalign=… (fortran only)
– -qarch=440 : generates standard powerpc instructions
– -qarch=440d : will try to generate double FPU code

Suggested steps on BG/L 
– -O -qarch=440 -qmaxmem=64000 (KB of memory used by compiler)
– -O3 -qarch=440/440d (-qmaxmem=-1 is default at –O3)
– -O4 -qarch=440d -qtune=440 (or -O5…)
– -O4 = -O3 -qhot -qipa=level=1 -qarch=auto
– -O5 = -O3 -qhot –qipa=level=2 -qarch=auto

Use –v flag or check .lst file to see all flags used in compilation.
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Compiler Listing

-qsource –qlist
– Creates .lst file containing assembler listing
– Highly recommended when trying to squeeze performance 

out of numerical kernel
– Try different compiler flags and study code that is generated 

to understand performance
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Runtime Mode

Virtual-node mode
– Each processor on a node runs as its own MPI task 

and gets ½ total RAM (256MB each).
– Use cqsub -m vn

Co-processor mode
– One CPU is used for message passing and the other 

for computation.
– Compute processor gets full 512Mb RAM.
– Use cqsub –m co
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Optimized Libraries

ESSL BG/L port available

No plans for PESSL port

Vanilla version of ESSL routines (BLAS, LAPACK, FFTW, etc.) 
performs poorly.

See cheat sheet for more details/examples.
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Cache Parity

Memory errors occur at a small but nonzero rate
– L1 date and instruction cache
– TLB

Usually correctable, but longer jobs are likely to see them more.

Use Write Through policy
– BGL_APP_L1_WRITE_THROUGH=1 

Bypass L1
– BGL_APP_L1_SWOA=1

Performance penalty ~ 10%-30%
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MPI Mapping

With virtual node mode, experiment with BGLMPI_MAPPING=TXYZ.
– This puts tasks 0 and 1 on the first node, tasks 2 and 3 on the next 

node, with nodes in x, y, z torus order. 
– The default layout is XYZT, which is often less efficient than TXYZ.
– Also note that in TXYZ mode, you get two tasks per node if you have 

#tasks < 2*#nodes; otherwise, the XYZT layout will leave just one 
task on at least some nodes.

– Can also write a mapfile to explicitly control processor mapping
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EAGER_LIMIT

BG/L can route messages either statically or dynamically.

By default, small messages (those smaller than MPI_EAGER) 
are routed statically, and large ones are routed dynamically.

These can be controlled with the following environment variables
(see cheat sheet for passing these to Cobalt):
– BGLMPI_EAGER = 1000 (default is 10000)

• Sets limiting message size in bytes for eager protocol
– BGLMPI_AE = 1

• To try adaptive route for eager message. Default is static.
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Random Exchange 8x8x8 Torus

Source: IBM
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Mapping and Eager Limit on PETSc-FUN3D



20INCITE Applications Workshop    February 7-8, 2007

Compiler Assertions

Three compiler assertions are particularly important for generating optimal 
code:
– Alignment

• call alignx(16,x(1))  Fortran
• __alignx(16,x) C

– Inform compiler that variable x is aligned on a 16-byte boundary. 
– Aliasing

• #pragma disjoint(*a,*b) C only
– Inform compiler that a and b will not refer to overlapping memory.

– Unrolling
• !ibm* unroll(n)  Fortran
• #pragma unroll(n) C

– Unroll inner loop that follows n elements.
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C
double * x, * y;
#pragma disjoint (*x, *y)
__alignx(16,x);
__alignx(16,y);
#pragma unroll(10)
for (i=0; i<n; i++) y[i] = a*x[i] + y[i];

Example with DAXPY

Fortran
call alignx(16,x(1))
call alignx(16,y(1))
!ibm* unroll(10)
do i = 1, n
y(i) = a*x(i) + y(i)
end do
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void triad(double *a, double *b, double *c, int n)
{

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */
for (i=0; i<n; i++)

a[i] = b[i] + ss*c[i];
/* --end Align */

}

void triad(double *a, double *b, double *c, int n)
{

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */
for (i=0; i<n; i++)

a[i] = b[i] + ss*c[i];
/* --end Align */

}

void triad(double *a, double *b, double *c, int n)
{
#pragma disjoint (*c,*a,*b)

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */

if ( ((int)(a) | (int)(b) | (int)(c)) & 0xf == 0) {
__alignx(16,a);
__alignx(16,b);
__alignx(16,c);

for (_i=0;_i<n;_i++) {
a[_i] = b[_i] + ss*c[_i];

}
} 
else {

for (_i=0;_i<n;_i++) {
a[_i]=b[_i]+ss*c[_i];

}
/* --end Align */

}

Annotations Example: 
STREAM triad.c
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Performance of STREAM triad.c

Size No Annotations
(MB/s)

Annotations (MB/s)

10 1920.00 2424.24
100 3037.97 6299.21

500000 1291.81 1830.89
1000000 1282.12 1442.17
2000000 1282.92 1415.52

1000 3341.22 8275.86
10000 1290.81 3717.88
50000 1291.52 3725.48

100000 1291.77 3727.21

5000000 1290.81 1446.48
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Double-Hummer Examples

See ~siegela/examples/ on bgl
– mxm

• In-cache matrix-matrix products using double-hummer intrinsics
– dotp

• dot product using double-hummer intrinsics and ensuring 
alignment

– ax+b
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Listing File

Use –qsource –qlist to generate friendly assembler listing.

Good strategy is to tweak source, compiler options and diagnose 
with .lst output, rather than hand-coding assembler.
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Performance Tools

Currently installed performance tools
– gprof for per-routine timings
– memmon for detecting high-water memory mark
– mpitrace for automatically timing mpi calls
– stackmonitor for monitoring stack size
– hpmlib preliminary port
– papi for hardware counters
– tau for more integrated and complex analysis

• Requires PAPI or hpmlib for hardware counters

See cheat sheet for examples of how to use.
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